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This is quite a bonus for both
approaches to modeling fluids.

Decomposition of multiscale problems & scale-up
In turbulence, in climate modeling and in other multiscale
fluids problems, a major challenge is “scale-up.” This is
the challenge of deriving models that correctly capture the
mean, or large scale flow—including the influence on it of
the rapid, or small scale dynamics.

In classical mechanics this sort of problem has been ap-
proached by choosing a proper “slow + fast” decomposi-
tion and deriving evolution equations for the slow mean
quantities by using, say, the method of averages.  For
nondissipative systems in classical mechanics that arise
from Hamilton’s variational principle, the method of aver-
ages may extend to the averaged Lagrangian method, un-
der certain conditions.

Eulerian vs Lagrangian means
In meteorology and oceanography, the averaging approach
has a venerable history and many facets. Often this aver-
aging is applied in the geosciences in combination with

additional approximations involving force balances (for
example, geostrophic and hydrostatic balances). It is also
sometimes discussed as an initialization procedure that
seeks a nearby invariant “slow manifold.”  Moreover, in
meteorology and oceanography, the averaging may be per-
formed in either the Eulerian, or the Lagrangian descrip-
tion. The relation between averaged quantities in the
Eulerian and Lagrangian descriptions is one of the classi-
cal problems of fluid dynamics.

Generalized Lagrangian mean (GLM)
The GLM equations of Andrews & McIntyre (J. Fluid
Mech. 89 [1978] 609–646) systematize the approach to
Lagrangian fluid modeling by introducing a slow + fast
decomposition of the Lagrangian particle trajectory in gen-
eral form. They then relate the Lagrangian mean of a fluid

quantity at the mean particle position to its Eulerian mean,
evaluated at the displaced fluctuating position. The GLM
equations are expressed directly in the Eulerian represen-
tation. The Lagrangian mean has the advantage of preserv-
ing the fundamental transport structure of fluid dynamics.
For example, the Lagrangian mean commutes with the sca-

lar advection operator and it preserves the Kelvin circula-
tion property of the fluid motion equation.

Compatibility of averaging and reduction of
Lagrangians for mechanics on Lie groups
In making slow + fast decompositions and constructing
averaged Lagrangians for fluid dynamics, care must gen-
erally be taken to see that the averaging and reduction pro-
cedures do not interfere with each other. Reduction in this
context refers to symmetry reduction of the action prin-
ciple by the subgroup of the diffeomorphisms that takes
the Lagrangian representation to the Eulerian representa-
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 Figure: The Averaged EP theorem produces a
cube consisting of four equivalence relations on
each of its left and right faces, and four com-
muting diagrams (one on each of its four re-
maining faces).
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tion of the flow field. The theory for this yields the  Euler-
Poincaré (EP) equations.

Euler-Poincaré (EP) equations
This compatibility requirement is handled automatically
in the GLM approach. The Lagrangian mean of the action
principle for fluids does not interfere with its reduction to
the Eulerian representation, since the averaging process is
performed at fixed Lagrangian coordinate. Thus, the pro-
cess of taking the Lagrangian mean is compatible with re-
duction by the particle-relabeling group.

We performed this reduction of the action principle and
thereby placed the GLM equations into the EP framework.
In doing this, we demonstrated the variational reduction
property of the Lagrangian mean. This is encapsulated in
the Averaged Euler-Poincaré Theorem.The GLM aver-
aging process preserves the variational structure in the EP
framework.

According to this theorem, the Lagrangian mean’s preser-
vation of the fundamental transport structure of fluid dy-
namics also extends to preserving the EP variational struc-
ture of these equations. This preservation of structure is
illustrated in the figure. The back face of the cube in the
figure displays the preservation of variational structure in
the Lagrangian fluid picture. Hamilton’s principle with L
yields the Euler-Lagrange equations EL in this picture, and
GLM averaging at fixed Lagrangian coordinate A preserves
this relation. Namely, Hamilton’s principle with the aver-
aged Lagrangian L yields the averaged Euler-Lagrange
equations EL.

This pair of Hamilton’s principles and Euler-Lagrange
equations has its counterpart in the Eulerian picture of fluid
dynamics—on the front face of the cube—whose varia-
tional relations are also exactly preserved by the GLM av-
eraging process. The bottom front edge of the cube repre-
sents the GLM averaged equations of Andrews & McIntyre
[1978]. The six faces of the EP averaging cube in the fig-
ure represent six interlocking commutative diagrams that
enable modeling and GLM averaging to be performed
equivalently either at the level of the equations, as in
Andrews & McIntyre [1978], or at the level of Hamilton’s
principle. At the level of Hamilton’s principle, powerful
theorems from other mean field theories are available. An
example is Noether’s theorem, which relates symmetries
of Hamilton’s principle to conservation laws of the equa-
tions of motion. Thus, the GLM averaged Hamilton’s
principle yields the GLM averaged fluid equations in ei-
ther fluid picture and one may transform interchangeably
along the edges of the cube in search of physical insight.

 Figure: The Averaged EP theorem produces a cube con-
sisting of four equivalence relations on each of its left
and right faces, and four commuting diagrams (one on
each of its four remaining faces).

Of course, this extension and these commuting relation-
ships are not possible with the Eulerian mean, because the
Eulerian mean does not preserve the transport structure of
fluid mechanics.

Thus, the Averaged EP Theorem puts the GLM averaged-
Lagrangian  approach and the method of GLM-averaged
equations onto equal footing. This is quite a bonus for both
approaches to modeling fluids. The averaged-Lagrangian
theory produces dynamics that can be verified directly by
averaging the original equations, and the GLM-averaged
equations inherit the conservation laws that are available
from the symmetries of the Lagrangian.
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